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Summary

The purpose of this paper is to investigate the existence of optical ortho-
gonal signature pattern codes (OOSPCs) of weight 3 and cross-correlation
constraint 1 and to discuss what is optimal for such OOSPCs. First we
focus on OOSPCs of auto-correlation constraint 1, where the optimality is
decided by the classical upper bound for the number of codewords in an
OOSPC, as presented by Kitayama (1994). We provide two constructions
– one is a direct construction using certain combinatorial objects, called
Skolem sequences, and the other is a recursive construction. Using these
constructions, for any odd integers m,n such that either m or n is not
congruent to 5 modulo 6, we obtain an optimal OOSPC of size m×n which
attains the Kitayama bound. Next we focus on OOSPCs of auto-correlation
constraint 2. We prove that the number of codewords in such an OOSPC of
size m× n is bounded above by mn/4 or b(mn− 1)/4c OOSPs, according
as mn is divisible by 4 or not. This new bound represents a significant
improvement on the Kitayama bound. Finally we construct many optimal
OOSPCs which attain the new bound, by presenting two new algebraic
constructions.

Key words: optical orthogonal signature pattern code (OOSPC), packing
design, Kitayama bound (Kwong-Yang bound).
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1. Introduction

Kitayama (1994) proposed a novel type of optical code-division multiple-
access (CDMA), called a space CDMA, for the parallel transmission of 2-
dimensional images through multicore fibers. In a space CDMA each pixel
in a 2-dimensional image is encoded into a signature address, called an
optical orthogonal signature pattern (OOSP). All the encoded images are
multiplexed and broadcast to all receivers. Then each receiver regenerates
the intended data from the multiplexed signals using its own OOSP. We re-
fer the reader to Hassan et al. (1995), Hui (1985), Kwong and Yang (2001)
and Park et al. (1992) for more information about spatial optical CDMA
networks using multicore fibers.
Let m,n, k, λa, λc be positive integers with mn > k > λa  λc. An

optical orthogonal signature pattern code, denoted by an (m,n, k, λa, λc)-
OOSPC, is a family C of binary (0, 1)-matrices (xi,j) of size m × n which
satisfies the following correlation properties:

(i) (auto-correlation property)

m−1∑
i=0

n−1∑
j=0

xi,jxi⊕p,j⊕̂q

{
= k if p = q = 0,
¬ λa otherwise

for any matrix (xi,j) ∈ C;

(ii) (cross-correlation property)

m−1∑
i=0

n−1∑
j=0

xi,jyi⊕p,j⊕̂q ¬ λc

for any distinct matrices (xi,j), (yi,j) ∈ C,

where the additions ⊕, ⊕̂ are reduced modulo m,n respectively. The va-
lue k is called a weight and λa, λc are respectively called auto- and cross-
correlation constraints. The OOSPCs form a special class of 2-dimensional
optical orthogonal codes; see Omrani and Kumer (2006).
Throughout this paper we restrict our attention to the case where

λc = 1, from a practical point of view. A challenging problem is to deter-
mine the largest possible cardinality φ(m,n, k, λa, 1) of an (m,n, k, λa, 1)-
OOSPC for givenm,n, k, λa. An (m,n, k, λa, 1)-OOSPC is said to be optimal
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if φ(m,n, k, λa, 1) is attained. The following upper bound for φ(m,n, k, λa, 1)
was given independently by Kitayama (1994) and Kwong and Yang (1996).

φ(m,n, k, λa, 1) ¬
⌊
λa(mn− 1)
k(k − 1)

⌋
=: J(m,n, k, λa, 1). (1)

An improvement of (1) was also derived by Kwong and Yang (2001).
Whenm and n are relatively prime, the existence of an optimal (m,n, k,

λa, 1)-OOSPC is just equivalent to that of an optimal (mn, k, λa, 1) optical
orthogonal codes (OOCs); see Construction I of Kwong and Yang (1996).
Thus in this case we can obtain a large number of optimal OOSPCs, in
conjunction with the known results on optimal OOCs; for example, see
Chung and Kumer (1990), Chung et al. (1989), Fuji-Hara and Miao (2000),
Fuji-Hara et al. (2001) and Moreno et al. (1995). However, when m and n
are not relatively prime, the problem of finding OOSPCs cannot be reduced
to that of finding OOCs. In this case some families of optimal OOSPCs
have been found for prime numbers m (= n); see Kwong and Yang (1996).
To the authors’ knowledge, little is known regarding the existence or the
construction of optimal OOSPCs for values of m and n in general, even for
the case where k = 3, being the minimal nontrivial case on k. Note that
an (m,n, 2, 1, 1)-OOSPC which attains (1) can be constructed in a trivial
manner.
The purpose of this paper is to investigate the existence of OOSPCs of

weight 3 and to discuss what is optimal for such OOSPCs, by observing a
relationship between OOSPCs and combinatorial designs. The relationship
is shown in Section 2. Essentially there are two cases to be considered,
that is, λa = λc = 1, or λa = 2 and λc = 1. Section 3 is devoted to
the former case, where (1) is used to decide the optimality of OOSPCs.
We present two constructions of optimal (m,n, 3, 1, 1)-OOSPCs; one is a
direct construction using Skolem sequences, and the other is a recursive
construction. By combining these constructions, for any odd integers m,n
such that m 6≡ 5 (mod 6) or n 6≡ 5 (mod 6), an optimal (m,n, 3, 1, 1)-
OOSPC can be obtained. Section 4 is devoted to the case where λa = 2
and λc = 1. We show that the cardinality of an (m,n, 3, 2, 1)-OOSPC is
bounded from above by mn/4 or b(mn−1)/4c, according as mn is divisible
by 4 or not. This new bound represents a significant improvement on the
Kitayama bound (or the Kwong-Yang bound) and hence it may be seen
that the Kitayama bound cannot be used in determining the optimality
of OOSPCs of λa = 2, unlike in the case where λa = 1. Recall that there
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exist many optimal OOSPCs of λa = 1 which attain (1). Finally we show
the validity of the new bound by constructing many (m,n, 3, 2, 1)-OOSPCs
optimal with respect to the bound through two new algebraic constructions.

2. OOSPCs and combinatorial designs

In this section we will mention a relationship between OOSPCs and
combinatorial designs.
Let k, v be positive integers such that 2 < k < v. A 2-(v, k, 1) packing

design is a system D of v points V and those k-subsets B, called blocks,
such that every pair of points occurs in at most one block. In particular
D is called a balanced incomplete block (BIB) design if “at most” in the
packing design definition is replaced by “exactly”. In fact, Yates (1936)
first proposed the use of BIB designs in agricultural experiments. Since
then, many researchers in statistics as well as in combinatorics have studied
packing designs and more general combinatorial designs. The theory of
combinatorial designs has been recently applied to many fields such as
quantum mechanics (see Beth et al., 2003), optics (see Harwit and Sloane,
1979), and bioinformatics (see Mutoh et al., 2003).
We explain some notations and terminologies from design theory; see

Beth et al. (1993). Let
(A
k

)
be a set of all k-subsets of an abelian group A.

Let B = {b0, · · · , bk−1} ∈
(A
k

)
. The stabilizer of B under A is a subgroup of

A consisting of all elements a ∈ A such that B+a = B, where B+a = {b0+
a, · · · , bk−1 + a}. The A-orbit of B is the set OrbA(B) = {B + a | a ∈ A}.
An automorphism of D is a permutation ξ on V such that Bξ ∈ B for each
B ∈ B. A system D is said to be A-invariant if it admits A as a point-
regular automorphism group. In particular a Zv-invariant packing design is
called cyclic. D is further said to be strictly A-invariant if it is A-invariant
and the stabilizer of any block in D under A equals the identity.
Now, observe that a set of all ordered pairs of subscripts (i, j) in an

OOSP (xi,j) forms the group Zm × Zn, where Zl is a set of residue classes
modulo l. There is a natural one-to-one correspondence between an OOSP
(xi,j) and a subset X of Zm × Zn;

xi,j =

{
1 if (i, j) ∈ X,
0 otherwise.

Thus an (m,n, k, λa, λc)-OOSPC can be identified with a family C of k-
subsets of Zm × Zn which satisfies the conditions:
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(i) (auto-correlation property)

|X ∩ (X + (i, j))|
{
= k if (i, j) = (0, 0),
¬ λa otherwise

(2)

for any X ∈ C, and

(ii) (cross-correlation property)

|X ∩ (Y + (i, j))| ¬ λc (3)

for any distinct X,Y ∈ C.

Hereafter let A = Zm×Zn and X ∈
(A
k

)
. Let ∆X be the multiset defined

by

∆X = {a− b | a, b ∈ X, a 6= b}

and ma(∆X) be the multiplicity of a in ∆X. Then it is obvious that

maxa∈A\{0} |X ∩ (X + a)| = maxa∈∆X ma(∆X). (4)

Proposition 2.1. An (m,n, k, λa, 1)-OOSPC is a subset C of
(Zm×Zn
k

)
such

that

(i) maxa∈∆X ma(∆X) ¬ λa for any X ∈ C,

(ii) ∆X ∩∆Y = ∅ for any distinct X,Y ∈ C.

In particular an (m,n, k, 1, 1)-OOSPC is itself a strictly (Zm×Zn)-invariant
2-(mn, k, 1) packing design.

Proof. (i) follows from (2) and (4), whereas (ii) follows from (3), since
λc = 1. �

3. Correlation λa = λc = 1

In this section the following theorem will be proved.

Theorem 3.1. Let m,n be odd integers such that m 6≡ 5 (mod 6) or
n 6≡ 5 (mod 6). Then there exists an optimal (m,n, 3, 1, 1)-OOSPC which
attains (1).
In order to show Theorem 3.1, we need some observations. The Skolem

sequence of order f is a sequence S = (s1, · · · , s2f ) of 2f integers which
satisfies the conditions that
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(i) for every k = 1, · · · , f , there exist exactly two elements si, sj ∈ S
such that si = sj = k, and

(ii) if si = sj = k with i < j, then j − i = k.

A hooked Skolem sequence of order f is a sequence S = (s1, · · · , s2f+1) of
2f+1 integers satisfying the above conditions (i) and (ii), and the additional
condition that

(iii) there exists exactly one si ∈ S such that si = 0.

It is well known (see O’Keefe, 1961, Skolem, 1957) that the Skolem sequ-
ence of order n exists if and only if n ≡ 0, 1 (mod 4), and a hooked Skolem
sequence of order n exists if and only if n ≡ 2, 3 (mod 4).

Lemma 3.1. For any positive integer n, there exists an optimal (3, n, 3, 1, 1)-
OOSPC which attains (1).

Proof. The proof will be made by considering three cases:

Case 1 n ≡ 1 (mod 2):
This case is well known; see for example Anderson (1997).

Case 2 n ≡ 2, 4 (mod 8):
Let S = (s1, · · · , sn−2) be the Skolem sequence of order (n − 2)/2. We

identify S with a collection of ordered pairs S̃ = {(ai, bi) | bi − ai = i, i =
1, · · · , (n − 2)/2} with

⋃(n−2)/2
i=1 {ai, bi} = {1, · · · , n − 2}. Then Proposi-

tion 2.1 can be used to show that the set

{{(0, 0), (1, ai), (1, bi)} | (ai, bi) ∈ S̃}

is a (3, n, 3, 1, 1)-OOSPC. Hence the cardinality of the OOSPC equals
(n− 2)/2 = J(3, n, 3, 1, 1).
Case 3 n ≡ 0, 6 (mod 8):
In the proof of Case 2, replace “Skolem sequence of order (n− 2)/2” by

“hooked Skolem sequence of order (n− 2)/2”.
Thus we obtain the result. �

Example 3.1. (i) Since (1, 1, 3, 4, 2, 3, 2, 4) is the Skolem sequence of or-
der 4, Lemma 3.1 yields the following optimal (3, 8, 3, 1, 1)-OOSPC which
attains (1):

{(0, 0), (1, 1), (1, 2)}, {(0, 0), (1, 5), (1, 7)},
{(0, 0), (1, 3), (1, 6)}, {(0, 0), (1, 4), (1, 8)}.
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(ii) Since (3, 1, 1, 3, 2, 0, 2) is a hooked Skolem sequence of order 3,
Lemma 3.1 yields the following optimal (3, 7, 3, 1, 1)-OOSPC which atta-
ins (1):

{(0, 0), (1, 2), (1, 3)}, {(0, 0), (1, 5), (1, 7)}, {(0, 0), (1, 1), (1, 4)}.

Remark 3.1. In the case that n is divisible by 3, the optimal (3, n, 3, 1, 1)-
OOSPC constructed by Lemma 3.1 cannot be obtained through Construc-
tion I of Kwong and Yang (1996).
For a divisorm′ ofm, we denote by ( mm′ )Zm the subgroup of Zm of order

m′. An (m,n, k, 1, 1)-OOSPC, say C, is said to be (( mm′ )Zm×Zn)-regular if
it satisfies the condition⋃

X∈C
∆X = (Zm × Zn) \

((
m

m′

)
Zm × Zn

)
.

A k × n matrix D = (dij) with entries from Zn is called an (n, k)-cyclic
difference matrix (CDM) if, for distinct i, j = 0, · · · , k − 1, the set

{di` − dj` | ` = 0, · · · , n− 1}

contains every element of Zn exactly once; see Colbourn and Dinitz (2007).

Lemma 3.2. Letm,n be positive integers andm′ be a divisor ofm. Assume
that there exist an (m′, n, k, 1, 1)-OOSPC with l OOSPs, an (( mm′ )Zm ×
Z1)-regular (m, 1, k, 1, 1)-OOSPC and an (n, k)-CDM. Then there exists
an (m,n, k, 1, 1)-OOSPC with nb m−m′k(k−1)c+ l OOSPs, where b·c denotes the
Gauss symbol.

Proof. Let C1 and C2 be an (( mm′ )Zm × Z1)-regular (m, 1, k, 1, 1)-OOSPC
and an (m′, n, k, 1, 1)-OOSPC, respectively. Let D = (dij) be an (n, k)-
CDM. For each B = {(b0, 0), · · · , (bk−1, 0)} ∈ C1, take a collection C(B) of
elements of

(Zm×Zn
k

)
such that

C(B) = {{(b0, d0,j), · · · , (bk−1, dk−1,j)} | j = 0, · · · , n− 1}.

Then by Proposition 2.1, the set

C =
⋃
B∈C1
C(B)

forms an (m,n, k, 1, 1)-OOSPC such that

∆C ∩
((
m

m′

)
Zm × Zn

)
= ∅. (5)
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Thus, by embedding each m′×n OOSP in C2 into an m×n OOSPC as its
m′×n sub-OOSP with ( mm′ )th, (

2m
m′ )th, · · · , mth rows of the m×n OOSPC,

we can take C ∪ C2 as an (m,n, k, 1, 1)-OOSPC. It remains to compute the
cardinality of the resulting OOSPC. Evidently, an (n, k)-CDM consists of
n columns and an (( mm′ )Zm × Z1)-regular (m, 1, k, 1, 1)-OOSPC consists of
b m−m′k(k−1)c OOSPs. Hence it follows from (5) that

|C ∪ C2| = |C|+ |C2| = n
⌊
m−m′

k(k − 1)

⌋
+ l. �

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let D = (dij) be a 3×n matrix with entries from
Zn defined by dij = ij. Then D is a (3, n)-CDM, since 2 is an invertible
element in Zn. Hence the result follows from Lemmas 3.1 and 3.2. �
It is well known that for any odd prime power pn ≡ 1 (mod 6), the-

re exists a Znp -invariant 2-(pn, 3, 1) packing design which attains (1); for
example, see Colbourn and Dinitz (2007). In particular this fact shows
the existence of an optimal (p, p, 3, 1, 1)-OOSPC attaining (1) for p ≡ 5
(mod 6). It remains unsolved whether or not Theorem 3.1 is valid for m,n
being congruent to 5 modulo 6 in general. We conclude this section by pro-
posing a general open problem.

Problem 3.1. Does there exist an optimal (m,n, 3, 1, 1)-OOSPC which
attains (1) for all positive integers m,n?

4. Correlation λa = 2 and λc = 1

As was revealed in Section 3, there are many optimal (m,n, 3, 1, 1)-
OOSPCs attaining the classical bound of Kitayama (1994). Thus in the case
that λa = 1, the Kitayama bound can be used in deciding the optimality
of OOSPCs. Next, what criteria should be used in deciding whether or not
given OOSPCs of λa = 2 are optimal? In this section we will give an answer
by deriving a new upper bound for the cardinality of OOSPCs and in fact
by finding many OOSPCs which attain the new bound.
Throughout this section we let A = Zm×Zn and use the same notations

as those introduced in Sections 1 and 2. For distinct nonzero elements
a1, . . . , at ∈ A, we abbreviate OrbA({0, a1, . . . , at}) as [a1, . . . , at]. Let

Ω(A) = {a ∈ A | 2a = 0}.
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Since Ω(A) is an elementary abelian 2-group, Ω(A) can be regarded as
a vector space over the finite field F2 of two elements. Let

T1 = {[a,−a] | a ∈ A \ Ω(A)},
T2 = {[a, h] | a ∈ A \ {0}, h ∈ Ω(A) \ {0, a}}.

It is possible to understand T1 and T2 geometrically when A is cyclic. That
is, when m = 1 (or n = 1), under a natural one-to-one correspondence
between x ∈ A and e

2πxi
m ∈ C (or e

2πxi
n ∈ C), the elements of T1(A) or

T2(A) can be viewed as isoceles or rectangles respectively; see Beth et al.
(1993) for the detail.
The following lemma will play a key role in deriving our new bound.

It focuses on the underlying elements in ∆X, denoted by supp(∆X), where
X is a subset of A.

Lemma 4.1. Let X = {0, a, b} ∈
(A
3

)
. Then it holds that

|supp(∆X)| =



2 if 〈a, b〉 ' Z3,
3 if 〈a, b〉 ' Z4 or Z22,
4 if [a, b] ∈ T1,
5 if [a, b] ∈ T2,
6 otherwise,

where 〈a, b〉 denotes the subgroup of A generated by a and b.

Proof. For X = {0, a, b} ∈
(A
3

)
, we have ∆X = {±a,±b,±(b− a)}.

Case 1 |∆X ∩ Ω(A)|  2:
Without loss of generality we may let a = h, b = h′ for some h, h′ ∈ Ω(A)

with h 6= h′, or equivalently, 〈a, b〉 ' Z22.
Case 2 |∆X ∩ Ω(A)| = 1:
If b−a = h for some h ∈ Ω(A), we haveX = {0, a, a+h} = {0,−a, h}+a.

Thus it suffices to consider the case where a = h for some h ∈ Ω(A). It is
obvious that |supp(∆X)| = 3 if and only if b = −b + h. This implies that
〈a, b〉 is a cyclic subgroup of A generated by b.
Case 3 |∆X ∩ Ω(A)| = 0:
Observe that {0, a, 2a} = {0, a,−a}+ a. Hence if |supp(∆X)| = 2 or 4,

we may let a = −b. In particular, |supp(∆X)| = 2 if and only if 3a = 0.
Thus we get the result. �
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Lemma 4.2. Let X ∈
(A
3

)
. Then it holds that

maxa∈A\{0}|X ∩ (X + a)| =


3 if |supp(∆X)| = 2,
2 if |supp(∆X)| = 3, 4, 5,
1 otherwise.

Proof. The result immediately follows from (4) and Lemma 4.1. �

Lemma 4.3. Let m,n be odd integers. Then,

(i) Z2m × Z4n contains exactly two cyclic subgroups of order 4 which
share an element of order 2, and

(ii) Z4m × Z4n contains exactly six cyclic subgroups of order 4. Given a
cyclic subgroup H1 of order 4, there exist two cyclic subgroups H2,H3
of order 4 such that for any X ∈

(Hi
3

)
, Y ∈

(Hj
3

)
with i, j = 1, 2, 3,

∆X ∩∆Y = ∅. Moreover, given four cyclic subgroups H1,H2,H3,H4,
we can choose some Hi,Hj such that for any X ∈

(Hi
3

)
, Y ∈

(Hj
3

)
,

∆X ∩∆Y 6= ∅.

Proof. Straightforward from a standard argument in group theory. �

Theorem 4.1.

φ(m,n, 3, 2, 1) ¬


mn

4
if mn ≡ 0 (mod 4),⌊

mn− 1
4

⌋
otherwise.

(6)

Proof. The proof consists of two cases.
Case 1 mn ≡ 0 (mod 4):
In the case where the Sylow 2-subgroup of A contains Z24, it follows

from Lemmas 4.1, 4.2 and 4.3 (ii) that

φ(m,n, 3, 2, 1) ¬
⌊
(mn− 1)− 3 · 3

4

⌋
+ 3 =

mn

4
.

Similarly, in the case where the Sylow 2-subgroup of A is Z2×Z4, it follows
from Lemmas 4.1, 4.2 and 4.3 (i) that

φ(m,n, 3, 2, 1) ¬
⌊
(mn− 1)− 3 · 1

4

⌋
+ 1 =

mn

4
.
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In the case where the Sylow 2-subgroup ofA is Z22, it follows from Lemmas 4.1
and 4.2 that

φ(m,n, 3, 2, 1) ¬
⌊
(mn− 1)− 3 · 1

4

⌋
+ 1 =

mn

4
.

Case 2 mn 6≡ 0 (mod 4):
In this case A contains no subgroups of order 4. Hence Lemmas 4.1

and 4.2 yield

φ(m,n, 3, 2, 1) ¬
⌊
mn− 1
4

⌋
.

Thus we obtain the result. �

Remark 4.1. The bound (6) represents an improvement on the Kitayama
bound (or the Kwong-Yang bound), since J(m,n, 3, 2, 1) = b(mn− 1)/3c.
By Remark 4.1, the optimality of OOSPCs of λa = 2 cannot be evalu-

ated by the Kitayama bound. In the following we will discuss the existence
of optimal (m,n, 3, 2, 1)-OOSPCs which attain the new bound (6).

Theorem 4.2. Let m,n be positive integers such that mn ≡ 2 (mod 4).
Then there exists an optimal (m,n, 3, 2, 1)-OOSPC which attains (6).

Proof. Let σ be an automorphism of A defined by aσ = 2a. Since mn ≡ 2
(mod 4), A contains the unique element h of order 2. Let Ã be a subset of
A such that

A \Aσ = Ã ∪ (−Ã) ∪ {h} and Ã ∩ (−Ã) = ∅.

First we will claim that for a ∈ Ã,

ma(∆({0, a,−a})) ¬ 2. (7)

Suppose the contrary. Then there are two possibilities that a = −2a or
a = −a. The former case cannot occur since −2a ∈ Aσ and Ã ∩ Aσ = ∅.
Thus we have a = −a, or equivalently, a ∈ Ω(A), which contradicts the
uniqueness of h. Second we will claim that for distinct a, b ∈ Ã,

∆({0, a,−a}) ∩∆({0, b,−b}) = ∅. (8)

Suppose the contrary. Then there are three possibilities, that is, a = ±2b,
b = ±2a, a = −b. Since {2a, 2b} ⊂ Aσ, an argument made in the proof
of (7) excludes the first two possibilities. The third case cannot also occur
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either, since Ã ∩ (−Ã) = ∅. Hence Proposition 2.1, together with (7) and
(8), shows that the set

{{0, a,−a} | a ∈ Ã}

is an (m,n, 3, 2, 1)-OOSPC. Evidently the resulting OOSPC consists of
(mn− 2)/4 OOSPs and hence it is optimal with respect to (6). �

Remark 4.3. If m or n equals 1, the statement of Theorem 4.2 is equiva-
lent to that of Theorem 3 in Levenshtein (2007).

Theorem 4.4. Let m be a prime number with m ≡ 1 (mod 4), and 2 be
a primitive root modulo m. Then there exists an optimal (m,m, 3, 2, 1)-
OOSPC which attains (6).

Proof. First, note that there exists a subset P of A which intersects each
cyclic subgroup of A in exactly one nonzero element, since A contains m+1
pairwise disjoint cyclic subgroups of order m (that is, any two of these sub-
groups should intersect in the zero element only). With the same symbol σ
as in Theorem 4.2, for each p ∈ P , let Cp be the set defined by

Cp = {pσ
2i | i = 1, · · · , (m− 1)/4}.

It is obvious that for distinct p, p′ ∈ P , Cp ∩ Cp′ = ∅. Moreover by the
assumption, (m− 1)/2 is the smallest positive integer r such that

2r + 1 ≡ 0 (mod m) or 2r − 1 ≡ 0 (mod m).

This implies that for distinct a, a′ ∈ Cp,

∆({0, a,−a}) ∩∆({0, a′,−a′}) = ∅.

Thus by Proposition 2.1, the set

C = {{0, a,−a} | a ∈ Cp, p ∈ P}

yields an (m,m, 3, 2, 1)-OOSPC. The OOSPC consists of (m+1)(m−1)/4 =
(m2 − 1)/4 OOSPs, which is seen to be optimal with respect to (6). �

Remark 4.5.

(i) Using Theorems 4.2 and 4.4, we have found many optimal OOSPCs
attaining (6), which seems to confirm the validity of using the new
bound in deciding whether or not given OOSPCs of λa = 2 are opti-
mal.
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(ii) The construction of optimal OOSPCs developed in Theorem 4.4 can
be similarly modified for m being a prime number congruent to 3
modulo 4, though the resulting OOSPCs are not optimal with respect
to (6).

(iii) Theorem 4.4 is also valid for some nonprime odd integers m. For
example, in the case that m = 65, we choose a cyclic subgroup of Z265
of order 65 and identify it with Z65. Then all the nonzero elements of
Z65 appear among the differences arising from the following triples

{0, 1, 2}, {0, 4, 8}, {0, 16, 32}.
{0, 3, 6}, {0, 12, 24}, {0, 17, 34}.
{0, 5, 10}, {0, 20, 40}, {0, 15, 30}.
{0, 7, 14}, {0, 28, 56}, {0, 18, 36}.
{0, 11, 22}, {0, 21, 42}, {0, 19, 38}.
{0, 13, 26}.

Since any cyclic subgroup of Z265 is isomorphic to one of Z5, Z13 and
Z65, there exists an optimal (65, 65, 3, 2, 1)-OOSPC which attains (6).

We conclude this section by summarizing two open problems.

Problem 4.1. (i) Extend Theorem 4.4 for nonprime odd integers. (ii) In the
case that mn ≡ 0 (mod 4), find the construction of optimal (m,n, 3, 2, 1)-
OOSPCs which attain (6).
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